Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38630210

RESUMEN

Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncontrast-enhanced short axis (SAX) cine images via radiomics is sufficient to distinguish subjects with acute myocardial infarction (AMI) from controls. Cine balanced steady-state free-precession images acquired at 1.5 T from 99 AMI and 49 control patients were included. First, radiomic feature extraction of the left ventricular myocardium of end-diastolic (ED) and end-systolic (ES) frames was performed based on automated (AUTO) or manually corrected (MAN) segmentations. Next, top features were selected based on optimal classification results using a support vector machine (SVM) approach. The classification performances of the four radiomics models (using AUTO or MAN segmented ED or ES images), were measured by AUC, classification accuracy (CA), F1-score, sensitivity and specificity. The most accurate model was found when combining the features RunLengthNonUniformity, ClusterShade and Median obtained from the manually segmented ES images (CA = 0.846, F1 score = 0.847). ED analysis performed worse than ES, with lower CA and F1 scores (0.769 and 0.770, respectively). Manual correction of automated contours resulted in similar model features as the automated segmentations and did not improve classification results. A radiomics analysis can capture the inherent contrast in noncontrast mid-ventricular SAX cine images to distinguishing AMI from healthy subjects. The ES radiomics model was more accurate than the ED model. Manual correction of the autosegmentation did not provide significant classification improvements.

2.
J Appl Physiol (1985) ; 136(3): 606-617, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38328825

RESUMEN

We aimed to develop a large animal model of subcoronary aortic stenosis (AS) to study intracoronary and microcirculatory hemodynamics. A total of three surgical techniques inducing AS were evaluated in 12 sheep. Suturing the leaflets together around a dilator (n = 2) did not result in severe AS. Suturing of a pericardial patch with a variable opening just below the aortic valve (n = 5) created an AS which was poorly tolerated if the aortic valve area (AVA) was too small (0.38-1.02 cm2), but was feasible with an AVA of 1.2 cm2. However, standardization of aortic regurgitation (AR) with this technique is difficult. Therefore, we opted for implantation of an undersized AV-bioprosthesis with narrowing sutures on the leaflets (n = 5). Overall, five sheep survived the immediate postoperative period of which three had severe AS (one patch and two bioprostheses). The surviving sheep with severe AS developed left ventricular hypertrophy and signs of increased filling-pressures. Intracoronary assessment of physiological indices in these AS sheep pointed toward the development of functional microvascular dysfunction, with a significant increase in coronary resting flow and hyperemic coronary resistance, resulting in a significantly higher index of microvascular resistance (IMR) and lower myocardial resistance reserve (MRR). Microscopic analysis showed myocardial hypertrophy and signs of fibrosis without evidence of capillary rarefaction. In a large animal model of AS, microvascular changes are characterized by increased resting coronary flow and hyperemic coronary resistance resulting in increased IMR and decreased MRR. These physiological changes can influence the interpretation of regularly used coronary indices.NEW & NOTEWORTHY In an animal model of aortic valve stenosis (AS), coronary physiological changes are characterized by increased resting coronary flow and hyperemic coronary resistance. These changes can impact coronary indices frequently used to assess concomitant coronary artery disease (CAD). At this point, the best way to assess and treat CAD in AS remains unclear. Our data suggest that fractional flow reserve may underestimate CAD, and nonhyperemic pressure ratios may overestimate CAD severity before aortic valve replacement.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Animales , Ovinos , Microcirculación , Circulación Coronaria , Hemodinámica , Estenosis de la Válvula Aórtica/cirugía , Estenosis Coronaria/cirugía , Estenosis Coronaria/diagnóstico
3.
Circulation ; 149(18): 1405-1415, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38109351

RESUMEN

BACKGROUND: Exercise-induced cardiac remodeling can be profound, resulting in clinical overlap with dilated cardiomyopathy, yet the significance of reduced ejection fraction (EF) in athletes is unclear. The aim is to assess the prevalence, clinical consequences, and genetic predisposition of reduced EF in athletes. METHODS: Young endurance athletes were recruited from elite training programs and underwent comprehensive cardiac phenotyping and genetic testing. Those with reduced EF using cardiac magnetic resonance imaging (defined as left ventricular EF <50%, or right ventricular EF <45%, or both) were compared with athletes with normal EF. A validated polygenic risk score for indexed left ventricular end-systolic volume (LVESVi-PRS), previously associated with dilated cardiomyopathy, was assessed. Clinical events were recorded over a mean of 4.4 years. RESULTS: Of the 281 elite endurance athletes (22±8 years, 79.7% male) undergoing comprehensive assessment, 44 of 281 (15.7%) had reduced left ventricular EF (N=12; 4.3%), right ventricular EF (N=14; 5.0%), or both (N=18; 6.4%). Reduced EF was associated with a higher burden of ventricular premature beats (13.6% versus 3.8% with >100 ventricular premature beats/24 h; P=0.008) and lower left ventricular global longitudinal strain (-17%±2% versus -19%±2%; P<0.001). Athletes with reduced EF had a higher mean LVESVi-PRS (0.57±0.13 versus 0.51±0.14; P=0.009) with athletes in the top decile of LVESVi-PRS having an 11-fold increase in the likelihood of reduced EF compared with those in the bottom decile (P=0.034). Male sex and higher LVESVi-PRS were the only significant predictors of reduced EF in a multivariate analysis that included age and fitness. During follow-up, no athletes developed symptomatic heart failure or arrhythmias. Two athletes died, 1 from trauma and 1 from sudden cardiac death, the latter having a reduced right ventricular EF and a LVESVi-PRS >95%. CONCLUSIONS: Reduced EF occurs in approximately 1 in 6 elite endurance athletes and is related to genetic predisposition in addition to exercise training. Genetic and imaging markers may help identify endurance athletes in whom scrutiny about long-term clinical outcomes may be appropriate. REGISTRATION: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374976&isReview=true; Unique identifier: ACTRN12618000716268.


Asunto(s)
Atletas , Cardiomiopatía Dilatada , Volumen Sistólico , Humanos , Masculino , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Femenino , Adulto , Adulto Joven , Resistencia Física/genética , Adolescente , Predisposición Genética a la Enfermedad , Remodelación Ventricular , Función Ventricular Izquierda
4.
Int J Cardiol ; 397: 131652, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101700

RESUMEN

INTRODUCTION: Transposition of the great arteries (TGA) is a cyanotic congenital heart defect for which the arterial switch operation (ASO) is the preferred surgical repair. This study wanted to investigate whether a panel of biomarkers could identify morphologic as well as hemodynamic changes obtained by cardiac magnetic resonance (CMR). METHODS: Forty-four adult patients were included. Blood samples were collected to measure a broad range of biomarkers (galectin-3, ST2, GDF-15, PINP, ICTP, PIIINP, IGF-1, NT-proBNP, and hs-Tn). CMR was performed at rest and during exercise to assess cardiac function and morphology. Explorative statistics were performed between biomarker levels and CMR findings. RESULTS: All patients were asymptomatic. While galectin-3, GDF-15, and NT-proBNP levels were within normal ranges, increased ST2, PINP, PIIINP, and ICTP levels were found in 20.5%, 34.1%, 45.5%, and 27.3% of patients, respectively. Moreover, 3 and 2 patients, respectively, showed elevated IGF-1 and hs-Tn levels. Although the ejection fraction of both ventricles was within normal limits, impaired cardiac reserve was found in 20 and 25% of patients for left and right ventricle, respectively. CMR revealed no evidence of diffuse interstitial fibrosis, while 4 patients showed focal ischemic scarring. However, no significant associations between serum biomarkers and CMR data could be detected. CONCLUSION: The results suggest that in asymptomatic ASO-repaired TGA patients serum level biomarkers are elevated and that this increase is not associated with morphological changes nor with a decreased cardiac reserve. Further study with larger sample sizes is required to draw conclusions with greater confidence.


Asunto(s)
Operación de Switch Arterial , Transposición de los Grandes Vasos , Adulto , Humanos , Operación de Switch Arterial/efectos adversos , Transposición de los Grandes Vasos/cirugía , Factor 15 de Diferenciación de Crecimiento , Factor I del Crecimiento Similar a la Insulina , Galectina 3 , Proteína 1 Similar al Receptor de Interleucina-1 , Proyectos Piloto , Arterias , Biomarcadores
5.
Front Cardiovasc Med ; 10: 1263301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099222

RESUMEN

Objective: Identifying individuals with subclinical cardiovascular (CV) disease could improve monitoring and risk stratification. While peak left ventricular (LV) systolic strain has emerged as a strong prognostic factor, few studies have analyzed the whole temporal profiles of the deformation curves during the complete cardiac cycle. Therefore, in this longitudinal study, we applied an unsupervised machine learning approach based on time-series-derived features from the LV strain curve to identify distinct strain phenogroups that might be related to the risk of adverse cardiovascular events in the general population. Method: We prospectively studied 1,185 community-dwelling individuals (mean age, 53.2 years; 51.3% women), in whom we acquired clinical and echocardiographic data including LV strain traces at baseline and collected adverse events on average 9.1 years later. A Gaussian Mixture Model (GMM) was applied to features derived from LV strain curves, including the slopes during systole, early and late diastole, peak strain, and the duration and height of diastasis. We evaluated the performance of the model using the clinical characteristics of the participants and the incidence of adverse events in the training dataset. To ascertain the validity of the trained model, we used an additional community-based cohort (n = 545) as external validation cohort. Results: The most appropriate number of clusters to separate the LV strain curves was four. In clusters 1 and 2, we observed differences in age and heart rate distributions, but they had similarly low prevalence of CV risk factors. Cluster 4 had the worst combination of CV risk factors, and a higher prevalence of LV hypertrophy and diastolic dysfunction than in other clusters. In cluster 3, the reported values were in between those of strain clusters 2 and 4. Adjusting for traditional covariables, we observed that clusters 3 and 4 had a significantly higher risk for CV (28% and 20%, P ≤ 0.038) and cardiac (57% and 43%, P ≤ 0.024) adverse events. Using SHAP values we observed that the features that incorporate temporal information, such as the slope during systole and early diastole, had a higher impact on the model's decision than peak LV systolic strain. Conclusion: Employing a GMM on features derived from the raw LV strain curves, we extracted clinically significant phenogroups which could provide additive prognostic information over the peak LV strain.

6.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L675-L688, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37724349

RESUMEN

Lung transplantation (LTx) is a challenging procedure. Following the process of ischemia-reperfusion injury, the transplanted pulmonary graft might become severely damaged, resulting in primary graft dysfunction. In addition, during the intraoperative window, the right ventricle (RV) is at risk of acute failure. The interaction of right ventricular function with lung injury is, however, poorly understood. We aimed to address this interaction in a translational porcine model of pulmonary ischemia-reperfusion injury. Advanced pulmonary and hemodynamic assessment was used, including right ventricular pressure-volume loop analysis. The acute model was based on clamping and unclamping of the left lung hilus, respecting the different hemodynamic phases of a clinical lung transplantation. We found that forcing entire right ventricular cardiac output through a lung suffering from ischemia-reperfusion injury increased afterload (pulmonary vascular resistance from baseline to end experiment P < 0.0001) and induced right ventricular failure (RVF) in 5/9 animals. Notably, we identified different compensation patterns in failing versus nonfailing ventricles (arterial elastance P = 0.0008; stroke volume P < 0.0001). Furthermore, increased vascular pressure and flow produced by the right ventricle resulted in higher pulmonary injury, as measured by ex vivo CT density (correlation: pressure r = 0.8; flow r = 0.85). Finally, RV ischemia as measured by troponin-T was negatively correlated with pulmonary injury (r = -0.76); however, troponin-T values did not determine RVF in all animals. In conclusion, we demonstrate a delicate balance between development of pulmonary ischemia-reperfusion injury and right ventricular function during lung transplantation. Furthermore, we provide a physiological basis for potential benefit of extracorporeal life support technology.NEW & NOTEWORTHY In contrast to the abundant literature of mechanical pulmonary artery clamping to increase right ventricular afterload, we developed a model adding a biological factor of pulmonary ischemia-reperfusion injury. We did not only focus on the right ventricular behavior, but also on the interaction with the injured lung. We are the first to describe this interaction while addressing the hemodynamic intraoperative phases of clinical lung transplantation.


Asunto(s)
Insuficiencia Cardíaca , Lesión Pulmonar , Trasplante de Pulmón , Daño por Reperfusión , Disfunción Ventricular Derecha , Porcinos , Animales , Función Ventricular Derecha , Troponina T , Pulmón , Hemodinámica/fisiología
7.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1217-1231, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37558285

RESUMEN

BACKGROUND: Spatial heterogeneity in repolarization plays an important role in generating and sustaining cardiac arrhythmias. Reliable determination of repolarization times remains challenging. OBJECTIVES: The goal of this study was to improve processing of densely sampled noncontact unipolar electrograms to yield reliable high-resolution activation and repolarization maps. METHODS: Endocardial noncontact unipolar electrograms were both simulated and recorded in pig left ventricle. Electrical activity on the endocardial surface was processed in terms of a pseudo-electric field. Activation and repolarization times were calculated by using an amplitude-weighted average on QRS and T waves (ie, the E-field method). This was compared vs the conventional Wyatt method on unipolar electrograms. Timing maps were validated against timing on endocardial action potentials in a simulation study. In vivo, activation and repolarization times determined by using this alternative E-field method were validated against simultaneously recorded endocardial monophasic action potentials (MAPs). RESULTS: Simulation showed that the E-field method provides viable measurements of local endocardial action potential activation and repolarization times. In vivo, correlation of E-field activation times with MAP activation times (rE = 0.76; P < 0.001) was similar to those of Wyatt (rWyatt = 0.80, P < 0.001; P[h1:rE > rWyatt] = 0.82); for repolarization times, correlation improved significantly (rE = 0.96, P < 0.001; rWyatt = 0.82, P < 0.001; P[h1:rE > rWyatt] < 0.00001). This resulted in improved correlations of activation-repolarization intervals to endocardial action potential duration on MAP (rE = 0.96, P < 0.001; rWyatt = 0.86, P < 0.001; P[h1:rE > rWyatt] < 0.00001). Spatial beat-to-beat variation of repolarization could only be calculated by using the E-field methodology and correlated well with the MAP beat-to-beat variation of repolarization (rE = 0.76; P = 0.001). CONCLUSIONS: The E-field method substantially enhances information from endocardial noncontact electrogram data, allowing for dense maps of activation and repolarization times and derived parameters.


Asunto(s)
Arritmias Cardíacas , Ventrículos Cardíacos , Animales , Porcinos , Arritmias Cardíacas/diagnóstico , Potenciales de Acción/fisiología , Endocardio/fisiología
8.
Int J Cardiol ; 388: 131153, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433406

RESUMEN

BACKGROUND: Exercise capacity is impaired in patients after arterial switch operation (ASO) for complete transposition of the great arteries. Maximal oxygen consumption is related with outcome. OBJECTIVES: This study assessed ventricular function by advanced echocardiography and cardiac magnetic resonance (CMR) imaging at rest and during exercise, to determine exercise capacity in ASO patients, and to correlate exercise capacity with ventricular function as potential early marker of subclinical impairment. METHODS: Forty-four patients (71% male, mean age 25 ± 4 years - range 18-40 years) were included during routine clinical follow-up. Assessment involved physical examination, 12­lead ECG, echocardiography, and cardiopulmonary exercise test (CPET) (day 1). On day 2 CMR imaging at rest and during exercise was performed. Blood was sampled for biomarkers. RESULTS: All patients reported New York Heart Association class I, the overall cohort had an impaired exercise capacity (80 ± 14% of predicted peak oxygen consumption). Fragmented QRS was present in 27%. Exercise CMR showed that 20% of patients had abnormal contractile reserve (CR) of the left ventricle (LV) and 25% had reduced CR of the right ventricle (RV). CR LV and CR RV were significantly associated with impaired exercise capacity. Pathological patterns on myocardial delayed enhancement and hinge point fibrosis were detected. Biomarkers were normal. CONCLUSION: This study found that in some asymptomatic ASO patients electrical, LV and RV changes at rest, and signs of fibrosis are present. Maximal exercise capacity is impaired and seems to be linearly related to the CR of the LV and the RV. Therefore, exercise CMR might play a role in detecting subclinical deterioration of ASO patients.


Asunto(s)
Operación de Switch Arterial , Transposición de los Grandes Vasos , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Femenino , Operación de Switch Arterial/efectos adversos , Transposición de los Grandes Vasos/diagnóstico por imagen , Transposición de los Grandes Vasos/cirugía , Prueba de Esfuerzo/métodos , Arterias , Fibrosis , Biomarcadores
9.
Am J Physiol Heart Circ Physiol ; 325(1): H54-H65, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37145956

RESUMEN

Ventricular arrhythmia (VT/VF) can complicate acute myocardial ischemia (AMI). Regional instability of repolarization during AMI contributes to the substrate for VT/VF. Beat-to-beat variability of repolarization (BVR), a measure of repolarization lability increases during AMI. We hypothesized that its surge precedes VT/VF. We studied the spatial and temporal changes in BVR in relation to VT/VF during AMI. In 24 pigs, BVR was quantified on 12-lead electrocardiogram recorded at a sampling rate of 1 kHz. AMI was induced in 16 pigs by percutaneous coronary artery occlusion (MI), whereas 8 underwent sham operation (sham). Changes in BVR were assessed at 5 min after occlusion, 5 and 1 min pre-VF in animals that developed VF, and matched time points in pigs without VF. Serum troponin and ST deviation were measured. After 1 mo, magnetic resonance imaging and VT induction by programmed electrical stimulation were performed. During AMI, BVR increased significantly in inferior-lateral leads correlating with ST deviation and troponin increase. BVR was maximal 1 min pre-VF (3.78 ± 1.36 vs. 5 min pre-VF, 1.67 ± 1.56, P < 0.0001). After 1 mo, BVR was higher in MI than in sham and correlated with the infarct size (1.43 ± 0.50 vs. 0.57 ± 0.30, P = 0.009). VT was inducible in all MI animals and the ease of induction correlated with BVR. BVR increased during AMI and temporal BVR changes predicted imminent VT/VF, supporting a possible role in monitoring and early warning systems. BVR correlated to arrhythmia vulnerability suggesting utility in risk stratification post-AMI.NEW & NOTEWORTHY The key finding of this study is that BVR increases during AMI and surges before ventricular arrhythmia onset. This suggests that monitoring BVR may be useful for monitoring the risk of VF during and after AMI in the coronary care unit settings. Beyond this, monitoring BVR may have value in cardiac implantable devices or wearables.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Taquicardia Ventricular , Animales , Porcinos , Arritmias Cardíacas/etiología , Arritmias Cardíacas/complicaciones , Infarto del Miocardio/complicaciones , Isquemia Miocárdica/complicaciones , Electrocardiografía/efectos adversos , Corazón , Fibrilación Ventricular
10.
Circ Arrhythm Electrophysiol ; 16(5): e011677, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37128895

RESUMEN

BACKGROUND: After myocardial infarction, the infarct border zone (BZ) is the dominant source of life-threatening arrhythmias, where fibrosis and abnormal repolarization create a substrate for reentry. We examined whether repolarization abnormalities are heterogeneous within the BZ in vivo and could be related to heterogeneous cardiomyocyte remodeling. METHODS: Myocardial infarction was induced in domestic pigs by 120-minute ischemia followed by reperfusion. After 1 month, remodeling was assessed by magnetic resonance imaging, and electroanatomical mapping was performed to determine the spatial distribution of activation-recovery intervals. Cardiomyocytes were isolated and tissue samples collected from the BZ and remote regions. Optical recording allowed assessment of action potential duration (di-8-ANEPPS, stimulation at 1 Hz, 37 °C) of large cardiomyocyte populations while gene expression in cardiomyocytes was determined by single nuclear RNA sequencing. RESULTS: In vivo, activation-recovery intervals in the BZ tended to be longer than in remote with increased spatial heterogeneity evidenced by a greater local SD (3.5±1.3 ms versus remote: 2.0±0.5 ms, P=0.036, npigs=5). Increased activation-recovery interval heterogeneity correlated with enhanced arrhythmia susceptibility. Cellular population studies (ncells=635-862 cells per region) demonstrated greater heterogeneity of action potential duration in the BZ (SD, 105.9±17.0 ms versus remote: 73.9±8.6 ms; P=0.001; npigs=6), which correlated with heterogeneity of activation-recovery interval in vivo. Cell-cell gene expression heterogeneity in the BZ was evidenced by increased Euclidean distances between nuclei of the BZ (12.1 [9.2-15.0] versus 10.6 [7.5-11.6] in remote; P<0.0001). Differentially expressed genes characterizing BZ cardiomyocyte remodeling included hypertrophy-related and ion channel-related genes with high cell-cell variability of expression. These gene expression changes were driven by stress-responsive TFs (transcription factors). In addition, heterogeneity of left ventricular wall thickness was greater in the BZ than in remote. CONCLUSIONS: Heterogeneous cardiomyocyte remodeling in the BZ is driven by uniquely altered gene expression, related to heterogeneity in the local microenvironment, and translates to heterogeneous repolarization and arrhythmia vulnerability in vivo.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Porcinos , Animales , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Sus scrofa , Imagen por Resonancia Magnética , Remodelación Ventricular/fisiología
11.
J Mol Cell Cardiol ; 179: 47-59, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003353

RESUMEN

Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure (HF), often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Mamíferos/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Porcinos
12.
JACC Basic Transl Sci ; 8(3): 301-315, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034286

RESUMEN

In the sheep model with pathophysiologic changes similar to patients with repaired TOF, severe PR leads to fibrotic changes in the RV. Pulmonary valve replacement reverses these fibrotic changes. Early valve replacement led to a quick RV recovery, and in time there was no difference in outcome between early and late valve replacement. These data support the benefit of valve replacement for RV function and suggest that there is a margin in the timing of the surgery. The fibrotic changes correlated well with the circulating biomarker PICP, which can have an added value in the clinical follow-up of patients with repaired TOF.

14.
Eur Heart J ; 44(26): 2388-2399, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-36881712

RESUMEN

AIMS: The impact of long-term endurance sport participation (on top of a healthy lifestyle) on coronary atherosclerosis and acute cardiac events remains controversial. METHODS AND RESULTS: The Master@Heart study is a well-balanced prospective observational cohort study. Overall, 191 lifelong master endurance athletes, 191 late-onset athletes (endurance sports initiation after 30 years of age), and 176 healthy non-athletes, all male with a low cardiovascular risk profile, were included. Peak oxygen uptake quantified fitness. The primary endpoint was the prevalence of coronary plaques (calcified, mixed, and non-calcified) on computed tomography coronary angiography. Analyses were corrected for multiple cardiovascular risk factors. The median age was 55 (50-60) years in all groups. Lifelong and late-onset athletes had higher peak oxygen uptake than non-athletes [159 (143-177) vs. 155 (138-169) vs. 122 (108-138) % predicted]. Lifelong endurance sports was associated with having ≥1 coronary plaque [odds ratio (OR) 1.86, 95% confidence interval (CI) 1.17-2.94], ≥ 1 proximal plaque (OR 1.96, 95% CI 1.24-3.11), ≥ 1 calcified plaques (OR 1.58, 95% CI 1.01-2.49), ≥ 1 calcified proximal plaque (OR 2.07, 95% CI 1.28-3.35), ≥ 1 non-calcified plaque (OR 1.95, 95% CI 1.12-3.40), ≥ 1 non-calcified proximal plaque (OR 2.80, 95% CI 1.39-5.65), and ≥1 mixed plaque (OR 1.78, 95% CI 1.06-2.99) as compared to a healthy non-athletic lifestyle. CONCLUSION: Lifelong endurance sport participation is not associated with a more favourable coronary plaque composition compared to a healthy lifestyle. Lifelong endurance athletes had more coronary plaques, including more non-calcified plaques in proximal segments, than fit and healthy individuals with a similarly low cardiovascular risk profile. Longitudinal research is needed to reconcile these findings with the risk of cardiovascular events at the higher end of the endurance exercise spectrum.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Estudios Prospectivos , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Angiografía por Tomografía Computarizada , Oxígeno , Angiografía Coronaria/métodos , Factores de Riesgo
15.
J Am Soc Echocardiogr ; 36(7): 778-787, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36958709

RESUMEN

BACKGROUND: Early identification of individuals at high risk for developing cardiovascular (CV) events is of paramount importance for efficient risk management. Here, the authors investigated whether using unsupervised machine learning methods on time-series data of left atrial (LA) strain could distinguish clinically meaningful phenogroups associated with the risk for developing adverse events. METHODS: In 929 community-dwelling individuals (mean age, 51.6 years; 52.9% women), clinical and echocardiographic data were acquired, including LA strain traces, at baseline, and cardiac events were collected on average 6.3 years later. Two unsupervised learning techniques were used: (1) an ensemble of a deep convolutional neural network autoencoder with k-medoids and (2) a self-organizing map to cluster spatiotemporal patterns within LA strain curves. Clinical characteristics and cardiac outcome were used to evaluate the validity of the k clusters using the original cohort, while an external population cohort (n = 378) was used to validate the trained models. RESULTS: In both approaches, the optimal number of clusters was five. The first three clusters had differences in sex distribution and heart rate but had a similar low CV risk profile. On the other hand, cluster 5 had the worst CV profile and a higher prevalence of left ventricular remodeling and diastolic dysfunction compared with the other clusters. The respective indexes of cluster 4 were between those of clusters 1 to 3 and 5. After adjustment for traditional risk factors, cluster 5 had the highest risk for cardiac events compared with clusters 1, 2, and 3 (hazard ratio, 1.36; 95% CI, 1.09-1.70; P = .0063). Similar LA strain patterns were obtained when the models were applied to the external validation cohort, and clinical characteristics revealed similar CV risk profiles across all clusters. CONCLUSION: Unsupervised machine learning algorithms used in time-series LA strain curves identified clinically meaningful clusters of LA deformation and provide incremental prognostic information over traditional risk factors.


Asunto(s)
Fibrilación Atrial , Enfermedades Cardiovasculares , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo , Medición de Riesgo , Factores de Riesgo de Enfermedad Cardiaca , Análisis por Conglomerados , Función Ventricular Izquierda
16.
Eur J Pharm Biopharm ; 184: 83-91, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693545

RESUMEN

Nanomedicine offers great potential for the treatment of cardiovascular disease and particulate systems have the capacity to markedly improve bioavailability of therapeutics. The delivery of pro-angiogenic hepatocyte growth factor (HGF) and pro-survival and pro-myogenic insulin-like growth factor (IGF-1) encapsulated in Alginate-Sulfate nanoparticles (AlgS-NP) might improve left ventricular (LV) functional recovery after myocardial infarction (MI). In a porcine ischemia-reperfusion model, MI is induced by 75 min balloon occlusion of the mid-left anterior descending coronary artery followed by reperfusion. After 1 week, pigs (n = 12) with marked LV-dysfunction (LV ejection fraction, LVEF < 45%) are randomized to fusion imaging-guided intramyocardial injections of 8 mg AlgS-NP prepared with 200 µg HGF and IGF-1 (HGF/IGF1-NP) or PBS (Control). Intramyocardial injection is safe and pharmacokinetic studies of Cy5-labeled NP confirm superior cardiac retention compared to intracoronary infusion. Seven weeks after intramyocardial-injection of HGF/IGF1-NP, infarct size, measured using magnetic resonance imaging, is significantly smaller than in controls and is associated with increased coronary flow reserve. Importantly, HGF/IGF1-NP-treated pigs show significantly increased LVEF accompanied by improved myocardial remodeling. These findings demonstrate the feasibility and efficacy of using AlgS-NP as a delivery system for growth factors and offer the prospect of innovative treatment for refractory ischemic cardiomyopathy.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Nanopartículas , Animales , Modelos Animales de Enfermedad , Factor de Crecimiento de Hepatocito , Factor I del Crecimiento Similar a la Insulina , Sulfatos , Porcinos
17.
J Surg Res ; 284: 6-16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36527768

RESUMEN

INTRODUCTION: To assess the safety and efficacy of an experimental large-diameter vascular graft externally sealed with an elastomeric polymer when used as an interposition graft in the descending aorta of sheep. METHODS: The experimental vascular grafts as well as control gelatin sealed interposition grafts were inserted into the descending aorta of juvenile sheep. The grafts were assessed by time to hemostasis and blood loss during surgery and hematology and biochemistry panels at distinct time points. Magnetic resonance imaging (MRI) was performed at 3 and at 6 mo after surgery, after which the animals were euthanized and necropsies were carried out including macroscopic and microscopic examination of the grafts, anastomoses, and distal organs. RESULTS: All animals survived the study period. There was no perceivable difference in the surgical handling of the grafts. The median intraoperative blood loss was 27.5 mL (range 10.0-125.0 mL) in the experimental group and 50.0 mL (range 10.0-75.0 mL) in the control group. The median time to hemostasis was 5.0 min (range 2.0-16.0 min) minutes in the experimental group versus 6.0 min (range 4.0-6.0 min) in the control group. MRI showed normal flow and graft patency in both groups. Healing and perianastomotic endothelialization was similar in both groups. CONCLUSIONS: The experimental graft has a similar safety and performance profile and largely comparable necropsy results, in comparison to a commonly used prosthetic vascular graft, with the experimental grafts eliciting a nonadherent external fibrous capsule as the major difference compared to the control grafts that were incorporated into the periadventitia. Survival, hemostatic sealing, and hematologic and radiologic results were comparable between the study groups.


Asunto(s)
Implantación de Prótesis Vascular , Prótesis Vascular , Animales , Ovinos , Implantación de Prótesis Vascular/efectos adversos , Elastómeros , Hemorragia , Grado de Desobstrucción Vascular , Oclusión de Injerto Vascular
18.
Artif Organs ; 47(2): 260-272, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36370033

RESUMEN

INTRODUCTION: Mock circulatory loops (MCLs) are mechanical representations of the cardiovascular system largely used to test the hemodynamic performance of cardiovascular medical devices (MD). Thanks to 3 dimensional (3D) printing technologies, MCLs can nowadays also incorporate anatomical models so to offer enhanced testing capabilities. The aim of this review is to provide an overview on MCLs and to discuss the recent developments of 3D anatomical models for cardiovascular MD testing. METHODS: The review first analyses the different techniques to develop 3D anatomical models, in both rigid and compliant materials. In the second section, the state of the art of MCLs with 3D models is discussed, along with the testing of different MDs: implantable blood pumps, heart valves, and imaging techniques. For each class of MD, the MCL is analyzed in terms of: the cardiovascular model embedded, the 3D model implemented (the anatomy represented, the material used, and the activation method), and the testing applications. DISCUSSIONS AND CONCLUSIONS: MCLs serve the purpose of testing cardiovascular MDs in different (patho-)physiological scenarios. The addition of 3D anatomical models enables more realistic connections of the MD with the implantation site and enhances the testing capabilities of the MCL. Current attempts focus on the development of personalized MCLs to test MDs in patient-specific hemodynamic and anatomical scenarios. The main limitation of MCLs is the impossibility to assess the impact of a MD in the long-term and at a biological level, for which animal experiments are still needed.


Asunto(s)
Válvulas Cardíacas , Hemodinámica , Impresión Tridimensional , Pulmón , Modelos Anatómicos , Modelos Cardiovasculares
19.
Circulation ; 147(7): 532-545, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36342348

RESUMEN

BACKGROUND: Breast cancer survivors treated with anthracycline-based chemotherapy (AC) have increased risk of functional limitation and cardiac dysfunction. We conducted a 12-month randomized controlled trial in 104 patients with early-stage breast cancer scheduled for AC to determine whether 12 months of exercise training (ExT) could attenuate functional disability (primary end point), improve cardiorespiratory fitness (VO2peak), and prevent cardiac dysfunction. METHODS: Women 40 to 75 years of age with stage I to III breast cancer scheduled for AC were randomized to 3 to 4 days per week aerobic and resistance ExT for 12 months (n=52) or usual care (UC; n=52). Functional measures were performed at baseline, at 4 weeks after AC (4 months), and at 12 months, comprising: (1) cardiopulmonary exercise testing to quantify VO2peak and functional disability (VO2peak ≤18.0 mL·kg-1·min-1); (2) cardiac reserve (response from rest to peak exercise), quantified with exercise cardiac magnetic resonance measures to determine changes in left and right ventricular ejection fraction, cardiac output, and stroke volume; (3) standard-of-care echocardiography-derived resting left ventricular ejection fraction and global longitudinal strain; and (4) biochemistry (troponin and BNP [B-type natriuretic peptide]). RESULTS: Among 104 participants randomized, greater study attrition was observed among UC participants (P=0.031), with 93 women assessed at 4 months (ExT, n=49; UC, n=44) and 87 women assessed at 12 months (ExT, n=49; UC, n=38). ExT attenuated functional disability at 4 months (odds ratio, 0.32 [95% CI, 0.11-0.94]; P=0.03) but not at 12 months (odds ratio, 0.27 [95% CI, 0.06-1.12]; P=0.07). In a per-protocol analysis, functional disability was prevented entirely at 12 months among participants adherent to ExT (ExT, 0% versus UC, 20%; P=0.005). Compared with UC at 12 months, ExT was associated with a net 3.5-mL·kg-1·min-1 improvement in VO2peak that coincided with greater cardiac output, stroke volume, and left and right ventricular ejection fraction reserve (P<0.001 for all). There was no effect of ExT on resting measures of left ventricular function. Postchemotherapy troponin increased less in ExT than in UC (8-fold versus 16-fold increase; P=0.002). There were no changes in BNP in either group. CONCLUSIONS: In women with early-stage breast cancer undergoing AC, 12 months of ExT did not attenuate functional disability, but provided large, clinically meaningful benefits on VO2peak and cardiac reserve. REGISTRATION: URL: https://www.anzctr.org.au/; Unique identifier: ACTRN12617001408370.


Asunto(s)
Neoplasias de la Mama , Cardiopatías , Humanos , Femenino , Recién Nacido , Volumen Sistólico , Antraciclinas/efectos adversos , Función Ventricular Izquierda , Unión Europea , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Reino Unido , Función Ventricular Derecha , Cardiopatías/diagnóstico por imagen , Cardiopatías/prevención & control , Antibióticos Antineoplásicos/farmacología , Ejercicio Físico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Troponina
20.
Int J Cardiol ; 372: 122-129, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460211

RESUMEN

PURPOSE: Response to cardiac resynchronization therapy (CRT) is reduced in patients with high left ventricular (LV) scar burden, in particular when scar is located in the LV lateral wall or septum. Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) can identity scar, but is not feasible in all patients. This study investigates if myocardial metabolism by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and contractile function by echocardiographic strain are alternatives to LGE-CMR. METHODS: In a prospective multicenter study, 132 CRT candidates (91% with left bundle branch block) were studied by speckle tracking strain echocardiography, and 53 of these by FDG-PET. Regional myocardial FDG metabolism and peak systolic strain were compared to LGE-CMR as reference method. RESULTS: Reduced FDG metabolism (<70% relative) precisely identified transmural scars (≥50% of myocardial volume) in the LV lateral wall, with area under the curve (AUC) 0.96 (95% confidence interval (CI) 0.90-1.00). Reduced contractile function by strain identified transmural scars in the LV lateral wall with only moderate accuracy (AUC = 0.77, CI 0.71-0.84). However, absolute peak systolic strain >10% could rule out transmural scar with high sensitivity (80%) and high negative predictive value (96%). Neither FDG-PET nor strain identified septal scars (for both, AUC < 0.80). CONCLUSIONS: In CRT candidates, FDG-PET is an excellent alternative to LGE-CMR to identify scar in the LV lateral wall. Furthermore, preserved strain in the LV lateral wall has good accuracy to rule out transmural scar. None of the modalities can identify septal scar. CLINICAL TRIAL REGISTRATION: The present study is part of the clinical study "Contractile Reserve in Dyssynchrony: A Novel Principle to Identify Candidates for Cardiac Resynchronization Therapy (CRID-CRT)", which was registered at clinicaltrials.gov (identifier NCT02525185).


Asunto(s)
Terapia de Resincronización Cardíaca , Cicatriz , Humanos , Cicatriz/diagnóstico por imagen , Ventrículos Cardíacos , Medios de Contraste , Estudios Prospectivos , Fluorodesoxiglucosa F18 , Gadolinio , Ecocardiografía/métodos , Tomografía de Emisión de Positrones , Terapia de Resincronización Cardíaca/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...